Performance of the proposed HyspIRI TIR bands for accurate compositional identification of eolian dust, ash and sand

> ^{1,3}Scheidt, S.P., ²Ramsey, M.S., ²Mohummad, R., ²Mercurio, E., and ¹Lancaster, N.

1. Desert Research Institute, Reno, NV

2. University of Pittsburgh, Pittsburgh, PA

3. Smithsonian, Center for Earth and Planetary Studies (CEPS)

Presentation Outline

- Explore previous ASTER TIR work used to study eolian systems and dust with respect to HyspIRI science
- Demonstrate how HyspIRI TIR data are suited to map surface composition relevant to dust source mapping (TQ1) and volcanic ash (TQ5)
- Demonstrate the relevance of HyspIRI thermal infrared data to climate science
- How is the identification of mineral composition affected by the choice of band positions?
- How are TIR data are affect the spectral signature of dust and sand?

Previous Work: ASTER TIR Spectral Mapping

Ratio of Quartz to Feldspar

Scheidt et al. 2010 (submitted)

Previous Work: ASTER TIR Spectral Mapping

Previous Work: ASTER TIR Spectral Mapping

Scheidt et al. 2010 (submitted)

Previous HyspIRI Work: Kelso Dunes

Using resampled MASTER data to HyspIRI v.2 greatly improved spectral mapping results

Presented at the last HyspIRI Workshop by M. Ramsey

Preliminary Results of Hyspiri Resampling

HyspIRI Advantage: Capture Large Dust Storms

Canary Islands, Sept. 6, 2007 http://earthobservatory.nasa.gov/

dustIEN	LAB	ASIER	HYSP 1.0	HYSP 2.
Clays	42.4	41.6	49.8	40.5
Carbonate	17.5	10.4	19.9	19.4
Phyllosilicates	26.6	38.0	0.0	28.2
Other	13.6	10.0	30.4	11.9
RMS	0.0021	0.0022	0.0011	0.0012

Dust Spectral Unmixing

CH9	LAB	ASTER	HYSP 1.0	HYSP 2.0
Phyllosilicates	61.7	58.7	34.6	55.9
Carbonate	11.4	0.0	17.8	6.6
Sulphates	14.4	0.0	47.6	37.5
Other	12.6	41.3	0.0	0.0
RMS	0.0034	0.0006	0.0024	0.0023

	Dust Spectra	dustKW1	LAB	ASTER	HYSP 1.0	HYSP 2.0
	1.00 Frank	Clays	54.2	51.8	50.5	50.8
	MAL MAL	Carbonate	23.1	19.7	24.6	32.8
	0.99	Phyllosilicates	22.7	28.5	24.9	16.4
ity		RMS	0.0027	0.0017	0.0023	0.0024
Siv						
0						
mis	0.97	dustTEN	LAB	ASTER	HYSP 1.0	HYSP 2.0
Emis	0.97	dustTEN Clays	LAB 42.4	ASTER 41.6	HYSP 1.0 49.8	HYSP 2.0 40.5
Emis	0.97	dustTEN Clays Carbonate	LAB 42.4 17.5	ASTER 41.6 10.4	HYSP 1.0 49.8 19.9	HYSP 2.0 40.5 19.4
Emis	0.97	dustTEN Clays Carbonate Phyllosilicates	LAB 42.4 17.5 26.6	ASTER 41.6 10.4 38.0	HYSP 1.0 49.8 19.9 0.0	HYSP 2.0 40.5 19.4 28.2
Emis		dustTEN Clays Carbonate Phyllosilicates Other	LAB 42.4 17.5 26.6 13.6	ASTER 41.6 10.4 38.0 10.0	HYSP 1.0 49.8 19.9 0.0 30.4	HYSP 2.0 40.5 19.4 28.2 11.9

Dust Affects on ASTER Spectra

Affect of Dust on ASTER Emissivity

Field Validation of ASTER data

- Collecting measurements of LW sky-radiance with ground-based FLIR camera (7-14 µm)
- Coincident downward-looking MODIS, AIRS, ASTER and other A-Train instruments
- Site of AERONET Station at Izaña Atmospheric Observatory, Tenerife, Spain from July 4 – August 4, 2009

Dust Affects on ASTER Spectra

Affect of Dust on ASTER Emissivity

Field Validation of ASTER data

- Collecting measurements of LW sky-radiance with ground-based FLIR camera (7-14 µm)
- Coincident downward-looking MODIS, AIRS, ASTER and other A-Train instruments
- Site of AERONET Station at Izaña Atmospheric Observatory, Tenerife, Spain from July 4 – August 4, 2009

Dust Enhancement Algorithm in TIR Imagery

- Use brightness temperature differences in the TIR wavelength regions to enhance the appearance of dust.
- SEVIRI Band Stretch

- Red:	BT(12.0 ι	um) – BT((10.8 um))
--------	-----------	-----------	-----------	---

- Green: BT(10.8 um) BT(98.7 um)
- Blue: BT(10.8 um)

MIN	MAX (K
-4	+2
0	+15
261	289

ASTER Band Stretch

		MIN	MAX (K)
- Red:	BT(11.32 um) – BT(10.65 um)	-4	+1
- Green:	BT(10.65 um) – BT(8.63 um)	-3	+5
– Blue:	BT (10.65 um)	260	289

ASTER Dust Enhancement Example

SEVIRI Dust Enhancement Product

SEVIRI Dust Enhancement Product

Conclusions

- HyspIRI's swath width, spatial, spectral and temporal resolutions are highly suited for imaging global eolian processes.
- Mapping dust source composition and imaging dust plumes in the TIR addresses the following:
 - The effects of dust on climate and the uncertainty of dust's radiative effects.
 - ecosystem responses to dust, which may be either beneficial or adverse.
- New band positions appear to improve linear spectral unmixing results.

...further rigorous analysis of spectral data is needed to determine the best band positions for mapping the widest array of compositions.

Extra Slides

Validation of TIR Remote Sensing of Dust

- Collaboration with Meteorological State Agency (AEMET)
- Sergio Rodriguez Head of Aerosol Program

North

Tanamachi et

al. 2006

- MBL
- pollution

Eyjafjallajökull Ashfall

E. Mercurio

Ash samples were collected in August 2010 at Markarfljót, a glacial outwash plain that drained the April-May Eyjafjallajökull eruption materials.

April 19, 2010 Eruption, NASA Earth Observatory

E. Mercurio, Iceland sample contributor at Markarfljót waterfall.

Improved Accuracy for Spectral Unmixing

Kelso Dunes Sand (sample k24)

Derived Laboratory %

Improved Spectral Mapping using Resampled MASTER TIR Data

Resampled Data to HyspIRI

Resampled Data to HyspIRI v2

M. Ramsey 2010

White Sands Gypsum Dune Field

Decorrelation Stretch (Bands 14,12,10), April 27, 2008

storm from White Sands

Dust

Fairly uniform composition

Ash Meadows National Wildlife Refuge

Amargosa Dunes, NV

- Dunes are under study by Nicholas Lancaster, Desert Research Institute
- Geomorphic analysis of small dunes using GPS
- Using TIR spectral analysis
- Validation using XRD and XRF geochemical measurements
- Highly varied sand composition

Decorrelation Stretch of ASTER Bands 14, 12 and 10

Preliminary Results of Hyspiri Resampling

Ash Meadows

AHME008	LAB	ASTER	HYSP 1.0	HYSP 2.0
Feldspar	44.8	42.9	45.3	41.0
Carbonate	37.2	41.4	40.7	43.5
Quartz	18.1	15.7	14.0	15.5
RMS	0.0029	0.0008	0.0012	0.0010

White Sands

WHSA001	LAB	ASTER	HYSP 1.0	HYSP 2.0
Sulphates	89.6	88.4	88.6	88.2
Other	9.7	11.6	9.6	11.8
Carbonate	0.7	0.0	1.8	0.0
RMS	0.0034	0.0074	0.0022	0.0015

HyspIRI Advantage: Capture Large Dust Storms

